é åçãªãã£ããããæ°åãæãäžãããã®æ°åŠçç¹æ§ãèªç¶çã§ã®åºçŸãèžè¡ã建ç¯ãžã®å¿çšããããŠã³ã³ãã¥ãŒã¿ãŒç§åŠãéèãžã®åœ±é¿ãæ¢ããŸãã
ãã£ããããæ°åïŒèªç¶çã®æ°å€ãã¿ãŒã³ãè§£ãæãã
ãã£ããããæ°åã¯æ°åŠã®åºç€ã§ãããèªç¶çå šäœã«é ãããæ°å€ãã¿ãŒã³ãæããã«ããŸããããã¯åãªãçè«çãªæŠå¿µã«ãšã©ãŸãããèžè¡ã建ç¯ããã³ã³ãã¥ãŒã¿ãŒç§åŠãéèã«è³ããŸã§ãæ§ã ãªåéã§å®çšçã«å¿çšãããŠããŸãããã®èšäºã§ã¯ããã£ããããæ°åã®é åçãªèµ·æºãæ°åŠçç¹æ§ããããŠåºç¯ãªçŸè±¡ã«ã€ããŠæ·±ãæãäžããŸãã
ãã£ããããæ°åãšã¯ïŒ
ãã£ããããæ°åã¯ãåæ°ããã®åã®2ã€ã®æ°ã®åèšã§ããæ°åã§ãéåžž0ãš1ããå§ãŸããŸãããããã£ãŠãæ°åã¯æ¬¡ã®ããã«å§ãŸããŸãã
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
æ°åŠçã«ããã®æ°åã¯æŒžååŒã§å®çŸ©ã§ããŸãã
F(n) = F(n-1) + F(n-2)
ããã§ãF(0) = 0 ããã³ F(1) = 1 ã§ãã
æŽå²çèæ¯
ãã®æ°åã¯ããã£ãããããšããŠãç¥ãããã¬ãªãã«ãã»ããµãã«ã¡ãªãã§åä»ããããŸããã圌ã¯çŽ1170幎ãã1250幎ãŸã§çããã€ã¿ãªã¢ã®æ°åŠè ã§ãããã£ããããã¯ã1202幎ã®èæžãç®ç€ã®æžãïŒLiber AbaciïŒã§ãã®æ°åã西ãšãŒãããã®æ°åŠã«ç޹ä»ããŸããããã®æ°åã¯äœäžçŽãåã«ã€ã³ãã®æ°åŠã§ã¯ç¥ãããŠããŸãããããã£ããããã®ç ç©¶ããããæ®åããããã®éèŠæ§ã匷調ããŸããã
ãã£ããããã¯ããŠãµã®ã®åäœæ°ã®å¢å ã«é¢ããåé¡ãæç€ºããŸãããäžçµã®ãŠãµã®ãæ¯ææ°ããäžçµãç£ã¿ãããã2ãæç®ããç¹æ®å¯èœã«ãªããšãããã®ã§ããæ¯æã®ãŠãµã®ã®çµæ°ã¯ãã£ããããæ°åã«åŸããŸãã
æ°åŠçç¹æ§ãšé»éæ¯
ãã£ããããæ°åã¯ããã€ãã®è峿·±ãæ°åŠçç¹æ§ãæã£ãŠããŸããæã泚ç®ãã¹ãã¯ãã®ãªã·ã£æåã®ãã¡ã€ (Ï) ã§ãã衚ãããé»éæ¯ãšã®å¯æ¥ãªé¢ä¿ã§ããã®å€ã¯çŽ1.6180339887...ã§ãã
é»éæ¯
é»éæ¯ã¯ãæ°åŠãèžè¡ãèªç¶çã«é »ç¹ã«çŸããç¡çæ°ã§ããããã¯ã2ã€ã®éã®æ¯çãããã®åèšãšå€§ããæ¹ã®éã®æ¯çãšåãã«ãªãããã«å®çŸ©ãããŸãã
Ï = (1 + â5) / 2 â 1.6180339887...
ãã£ããããæ°åãããã«é²ããšãé£ç¶ããé ã®æ¯çã¯é»éæ¯ã«è¿ã¥ããŸããäŸãã°ïŒ
- 3 / 2 = 1.5
- 5 / 3 â 1.667
- 8 / 5 = 1.6
- 13 / 8 = 1.625
- 21 / 13 â 1.615
- 34 / 21 â 1.619
ãã®é»éæ¯ãžã®åæã¯ããã£ããããæ°åã®åºæ¬çãªç¹åŸŽã§ãã
é»éèºæ
é»éèºæã¯ããã®æé·å åãé»éæ¯ã«çãã察æ°èºæã§ãããã£ããããã¿ã€ãªã³ã°ã®æ£æ¹åœ¢ã®å¯Ÿè§ç·ãçµã¶å匧ãæãããšã§è¿äŒŒã§ããŸãã忣æ¹åœ¢ã®èŸºã®é·ãã¯ãã£ããããæ°ã«å¯Ÿå¿ããŸãã
é»éèºæã¯ãããã¯ãªã®çš®ã®é 眮ãéæ²³ã®æžŠå·»ããè²æ®»ã®åœ¢ãªã©ãæ°å€ãã®èªç¶çŸè±¡ã«çŸããŸãã
èªç¶çã«ããããã£ããããæ°å
ãã£ããããæ°åãšé»éæ¯ã¯ãé©ãã»ã©èªç¶çã«åºãååšããŸãããããã¯æ§ã ãªçç©åŠçæ§é ãé 眮ã«çŸããŸãã
æ€ç©æ§é
æãäžè¬çãªäŸã¯ãæ€ç©ã®èãè±ã³ããçš®ã®é 眮ã§ããå€ãã®æ€ç©ã¯ãã£ããããæ°ã«åèŽããèºæãã¿ãŒã³ã瀺ããŸãããã®é 眮ã¯ãæ€ç©ã®æ¥å ãžã®é²åºãæé©åããçš®ã®å©çšç©ºéãæå€§åããŸãã
- ããã¯ãªïŒããã¯ãªã®é éšã®çš®åã¯ãæèšåããšåæèšåãã®2çµã®èºæç¶ã«é 眮ãããŠããŸããèºæã®æ°ã¯ããã°ãã°é£ç¶ãããã£ããããæ°ïŒäŸïŒ34ãš55ããŸãã¯55ãš89ïŒã«å¯Ÿå¿ããŸãã
- æŸãŒã£ããïŒæŸãŒã£ããã®é±çã¯ãããã¯ãªãšåæ§ã®èºæãã¿ãŒã³ã§é 眮ãããŠãããããããã£ããããæ°ã«åŸããŸãã
- è±ã³ãïŒå€ãã®è±ã®è±ã³ãã®æ°ã¯ãã£ããããæ°ã§ããäŸãã°ããŠãªã¯ãã°ãã°3æã®è±ã³ããæã¡ããã³ããŠã²ã¯5æããã«ãã£ããŠã ã¯8æãããªãŒãŽãŒã«ãã¯13æãã¢ã¹ã¿ãŒã¯21æãããã®ã¯ã¯34ã55ããŸãã¯89æã®è±ã³ããæã€ããšããããŸãã
- æšã®æåããïŒäžéšã®æšã®æåãããã¿ãŒã³ã¯ãã£ããããæ°åã«åŸããŸãã䞻幹ã¯1æ¬ã®æã«åããããã®æã®1æ¬ã2æ¬ã«åããããšãã£ãå ·åã«ãã£ãããããã¿ãŒã³ã«åŸããŸãã
åç©ã®è§£ååŠ
æ€ç©ã»ã©æããã§ã¯ãããŸãããããã£ããããæ°åãšé»éæ¯ã¯åç©ã®è§£ååŠã«ãèŠãããŸãã
- è²æ®»ïŒãªãŠã ã¬ã€ãä»ã®è»äœåç©ã®è²æ®»ã¯ãé»éèºæãè¿äŒŒãã察æ°èºæã瀺ãããšãå€ãã§ãã
- äœã®æ¯çïŒå Žåã«ãã£ãŠã¯ã人éãå«ãåç©ã®äœã®æ¯çãé»éæ¯ã«é¢é£ä»ããããŠããŸããããããã¯è°è«ã®å¯Ÿè±¡ã§ãã
éæ²³ãšæ°è±¡ãã¿ãŒã³ã«ãããèºæ
ãã倧ããªèŠæš¡ã§ã¯ãéæ²³ãããªã±ãŒã³ã®ãããªæ°è±¡çŸè±¡ã«ãèºæãã¿ãŒã³ãèŠãããŸãããããã®èºæã¯é»éèºæã®å®ç§ãªäŸã§ã¯ãããŸãããããã®åœ¢ã¯ãã°ãã°ãããè¿äŒŒããŸãã
èžè¡ãšå»ºç¯ã«ããããã£ããããæ°å
èžè¡å®¶ã建ç¯å®¶ã¯ãé·å¹Žã«ããããã£ããããæ°åãšé»éæ¯ã«é äºãããŠããŸããã圌ãã¯ãããã®ååãäœåã«åãå ¥ããçŸçã§èª¿åã®ãšããæ§æãäœãåºããŠããŸããã
é»éé·æ¹åœ¢
é»éé·æ¹åœ¢ã¯ãèŸºã®æ¯çãé»éæ¯ïŒçŽ1:1.618ïŒã§ããé·æ¹åœ¢ã§ããããã¯æãèŠèŠçã«çŸããé·æ¹åœ¢ã®äžã€ã§ãããšä¿¡ããããŠããŸããå€ãã®èžè¡å®¶ã建ç¯å®¶ããã¶ã€ã³ã«é»éé·æ¹åœ¢ã䜿çšããŠããŸããã
èžè¡ã«ãããäŸ
- ã¬ãªãã«ãã»ãã»ãŽã£ã³ãã®ãã¢ãã»ãªã¶ãïŒäžéšã®çŸè¡å²å®¶ã¯ããã¢ãã»ãªã¶ãã®æ§å³ãé»éé·æ¹åœ¢ãšé»éæ¯ãåãå ¥ããŠãããšäž»åŒµããŠããŸããç®ãé¡ãªã©ãäž»èŠãªç¹åŸŽã®é 眮ãé»éæ¯çãšäžèŽããŠããå¯èœæ§ããããŸãã
- ãã±ã©ã³ãžã§ãã®ãã¢ãã ã®åµé ãïŒã·ã¹ãã£ãŒã瀌æå ã®ãã®ãã¬ã¹ã³ç»ã®æ§å³ããäžéšã®äººã ã«ãã£ãŠé»éæ¯ãåãå ¥ããŠãããšä¿¡ããããŠããŸãã
- ãã®ä»ã®èžè¡äœåïŒæŽå²äžã®ä»ã®å€ãã®èžè¡å®¶ãããã©ã³ã¹ãšèª¿åãéæããããã«ãæèçãŸãã¯ç¡æèçã«äœåã«é»éæ¯ã䜿çšããŠããŸããã
建ç¯ã«ãããäŸ
- ãã«ããã³ç¥æ®¿ïŒã®ãªã·ã£ïŒïŒå€ä»£ã®ãªã·ã£ã®ç¥æ®¿ã§ãããã«ããã³ç¥æ®¿ã®å¯žæ³ã¯ãé»éæ¯ã«è¿äŒŒãããšèšãããŠããŸãã
- ã®ã¶ã®å€§ãã©ãããïŒãšãžããïŒïŒããã€ãã®çè«ã§ã¯ã倧ãã©ãããã®æ¯çãé»éæ¯ãåãå ¥ããŠãããšç€ºåãããŠããŸãã
- çŸä»£å»ºç¯ïŒå€ãã®çŸä»£ã®å»ºç¯å®¶ã¯ãèŠèŠçã«é åçãªæ§é ç©ãäœæããããã«ããã¶ã€ã³ã«é»éæ¯ã䜿ãç¶ããŠããŸãã
ã³ã³ãã¥ãŒã¿ãŒç§åŠãžã®å¿çš
ãã£ããããæ°åã¯ãã³ã³ãã¥ãŒã¿ãŒç§åŠãç¹ã«ã¢ã«ãŽãªãºã ãããŒã¿æ§é ã«ãããŠå®çšçãªå¿çšããããŸãã
ãã£ããããæ¢çŽ¢æ³
ãã£ããããæ¢çŽ¢ã¯ããœãŒããããé åå ã®èŠçŽ ãèŠã€ããããã«ãã£ããããæ°ã䜿çšããæ¢çŽ¢ã¢ã«ãŽãªãºã ã§ããäºåæ¢çŽ¢ã«äŒŒãŠããŸãããé åãååã«åå²ããã®ã§ã¯ãªãããã£ããããæ°ã«åºã¥ããŠã»ã¯ã·ã§ã³ã«åå²ããŸãããã£ããããæ¢çŽ¢ã¯ãç¹å®ã®ç¶æ³ãç¹ã«ã¡ã¢ãªå ã§åçã«åæ£ãããŠããªãé åãæ±ãå Žåã«ãäºåæ¢çŽ¢ãããå¹ççã§ããããšããããŸãã
ãã£ããããããŒã
ãã£ããããããŒãã¯ãæ¿å ¥ãæå°èŠçŽ ã®æ€çŽ¢ãããŒå€ã®æžå°ãªã©ã®æäœã«ç¹ã«å¹ççãªããŒãããŒã¿æ§é ã®äžçš®ã§ãããã€ã¯ã¹ãã©æ³ãããªã æ³ãªã©ãæ§ã ãªã¢ã«ãŽãªãºã ã§äœ¿çšãããŸãã
ä¹±æ°çæ
ãã£ããããæ°ã¯ãç䌌乱æ°ã·ãŒã±ã³ã¹ãçæããããã«ä¹±æ°çæåšã§äœ¿çšã§ããŸãããããã®çæåšã¯ãã·ãã¥ã¬ãŒã·ã§ã³ãä¹±æ°ãå¿ èŠãªãã®ä»ã®ã¢ããªã±ãŒã·ã§ã³ã§ãã䜿çšãããŸãã
éèãžã®å¿çš
éèã§ã¯ããã£ããããæ°ãšé»éæ¯ããã¯ãã«ã«åæã«äœ¿çšãããæœåšçãªãµããŒãã¬ãã«ãšã¬ãžã¹ã¿ã³ã¹ã¬ãã«ãç¹å®ããäŸ¡æ Œã®åããäºæž¬ããŸãã
ãã£ããããã»ãªãã¬ãŒã¹ã¡ã³ã
ãã£ããããã»ãªãã¬ãŒã¹ã¡ã³ãã¬ãã«ã¯ãäŸ¡æ Œãã£ãŒãäžã®æ°Žå¹³ç·ã§ãæœåšçãªãµããŒããŸãã¯ã¬ãžã¹ã¿ã³ã¹ã®é åã瀺ããŸãããããã¯ã23.6%ã38.2%ã50%ã61.8%ã100%ãªã©ã®ãã£ããããæ¯çã«åºã¥ããŠããŸãããã¬ãŒããŒã¯ãããã®ã¬ãã«ã䜿çšããŠãååŒã®æœåšçãªãšã³ããªãŒãã€ã³ããšãšã°ãžãããã€ã³ããç¹å®ããŸãã
ãã£ããããã»ãšã¯ã¹ãã³ã·ã§ã³
ãã£ããããã»ãšã¯ã¹ãã³ã·ã§ã³ã¬ãã«ã¯ãçŸåšã®äŸ¡æ Œç¯å²ãè¶ ããæœåšçãªäŸ¡æ Œã¿ãŒã²ãããäºæž¬ããããã«äœ¿çšãããŸãããããããã£ããããæ¯çã«åºã¥ããŠããããã¬ãŒããŒããªãã¬ãŒã¹ã¡ã³ãåŸã«äŸ¡æ Œãåãå¯èœæ§ã®ããé åãç¹å®ããã®ã«åœ¹ç«ã¡ãŸãã
ãšãªãªããæ³¢åçè«
ãšãªãªããæ³¢åçè«ã¯ããã£ããããæ°ã䜿çšããŠåžå ŽäŸ¡æ Œã®ãã¿ãŒã³ãç¹å®ãããã¯ãã«ã«åæææ³ã§ãããã®çè«ã¯ãåžå ŽäŸ¡æ Œãæ³¢åãšåŒã°ããç¹å®ã®ãã¿ãŒã³ã§åãããã£ããããæ¯çã䜿çšããŠåæã§ããããšã瀺åããŠããŸãã
éèŠäºé ïŒãã£ããããåæã¯éèã§åºã䜿çšãããŠããŸãããåžå Žã®åããäºæž¬ããããã®å®ç§ãªæ¹æ³ã§ã¯ãªãããšãèŠããŠããããšãéèŠã§ããä»ã®ãã¯ãã«ã«åæããã³ãã¡ã³ãã¡ã³ã¿ã«åæææ³ãšäœµçšããå¿ èŠããããŸãã
æ¹å€ãšèª€è§£
ãã£ããããæ°åã«å¯Ÿããåºç¯ãªé åã«ãããããããããã€ãã®äžè¬çãªæ¹å€ãšèª€è§£ã«å¯ŸåŠããããšãéèŠã§ãã
éå°ãªè§£é
äžè¬çãªæ¹å€ã®1ã€ã¯ããã£ããããæ°åãšé»éæ¯ããã°ãã°éå°ã«è§£éãããããŸãã«ãèªç±ã«é©çšãããããšã§ãããããã¯å€ãã®èªç¶çŸè±¡ã«çŸããŸãããå®éã«ååšããªãç¶æ³ã«ãã¿ãŒã³ãç¡çã«åœãŠã¯ããããšã¯é¿ããã¹ãã§ããçžé¢é¢ä¿ã¯å æé¢ä¿ãæå³ããŸããã
éžæãã€ã¢ã¹
ããäžã€ã®æžå¿µã¯éžæãã€ã¢ã¹ã§ãã人ã ã¯ãã£ããããæ°åãçŸããäºäŸãéžæçã«åŒ·èª¿ããçŸããªãäºäŸãç¡èŠããå¯èœæ§ããããŸããäž»é¡ã«æ¹å€çãã€å®¢èгçãªå§¿å¢ã§åãçµãããšãéèŠã§ãã
è¿äŒŒã®è°è«
äžéšã®äººã¯ãèªç¶ãèžè¡ã§èгå¯ãããæ¯çãé»éæ¯ã®åãªãè¿äŒŒã§ãããçæ³çãªå€ããã®éžè±ãæ°åã®é¢é£æ§ãçåèŠããã®ã«ååãªã»ã©å€§ãããšäž»åŒµããŸãããããããããã®æ°åãšæ¯çãéåžžã«å€ãã®åéã§ããã»ã©é »ç¹ã«çŸãããšããäºå®ã¯ããã®è¡šçŸãæ°åŠçã«å®ç§ã§ãªããšãããã®éèŠæ§ã瀺åããŠããŸãã
çµè«
ãã£ããããæ°åã¯åãªãæ°åŠçãªå¥œå¥å¿ã«ãšã©ãŸãããèªç¶çã«æµžéããäœäžçŽã«ãããã£ãŠèžè¡å®¶ã建ç¯å®¶ãç§åŠè ãé äºããŠããåºæ¬çãªãã¿ãŒã³ã§ããè±ã®è±ã³ãã®é 眮ããéæ²³ã®æžŠå·»ããŸã§ããã£ããããæ°åãšé»éæ¯ã¯ãå®å®ã®æ ¹åºã«ããç§©åºãšçŸãããå£éèŠããŠãããŸãããããã®æŠå¿µãçè§£ããããšã§ãçç©åŠãèžè¡ããã³ã³ãã¥ãŒã¿ãŒç§åŠãéèã«è³ããŸã§ãæ§ã ãªåéã§è²ŽéãªæŽå¯ãåŸãããšãã§ããŸãããã®äž»é¡ã«æ¹å€çãªç®ç·ã§åãçµãããšãäžå¯æ¬ ã§ããããã£ããããæ°åã®æ°žç¶çãªååšã¯ãã®æ·±ãéèŠæ§ãç©èªã£ãŠããŸãã
ãããªãæ¢æ±
ãã£ããããæ°åã«ã€ããŠããã«æ·±ãæãäžããã«ã¯ã以äžã®ãªãœãŒã¹ãæ€èšããŠãã ããã
- æžç±ïŒ
- é»éæ¯ïŒäžçã§æãé©ãã¹ãæ°ããã¡ã€ã®ç©èª ããªãªã»ãªãŽã£ãªè
- ãã£ããããæ° ãã³ã©ã€ã»ãŽã©ãããšãè
- ãŠã§ããµã€ãïŒ
- The Fibonacci Association: https://www.fibonacciassociation.org/
- Plus Magazine: https://plus.maths.org/content/fibonacci-numbers-and-golden-section
æ¢æ±ãšèª¿æ»ãç¶ããããšã§ããã®é©ãã¹ãæ°åŠçæ°åã®ç§å¯ãšå¿çšãããã«è§£ãæããããšãã§ããŸãã